TEOREMA FUNDAMENTAL DEL CALCULO
El Teorema Fundamental del Cálculo proporciona un método abreviado para calcular integrales definidas, sin necesidad de tener que calcular los límites de las sumas de Riemann.
Conceptualmente, dicho teorema unifica los estudios de la derivación e integración, mostrando que ambos procesos son mutuamente inversos.
Sea f una función integrable en el intervalo [a, b], entonces:
i) F es continua en [a, b]
ii) En todo punto c de [a, b] en el que f sea continua se verifica que F es derivable en dicho punto, y F'(c) = f(c).
El Teorema Fundamental del Cálculo Integral nos muestra que F(x) es precisamente el área limitada por la gráfica de una función continua f(x).
A cada punto c en [a, b] se le hace corresponder el área Tc.
Si calculamos la derivada de esa función:
Video explicacion: https://www.youtube.com/watch?v=SCKpUCax5ss