Recuperacion matematicas 2do periodo
Sucesiones:
Una sucesión(o progresión) es una lista de números en un orden específico. Por ejemplo: 2, 4, 6, 8, 10 forman una sucesión. Esta sucesión se denomina finita por que tiene un ultimo numero. Si un conjunto de números que forman una sucesión no tiene ultimo numero, se dice que la sucesión es infinita. Por ejemplo: en una sucesión infinita; los tres últimos puntos indican que no hay último número en la sucesión. Como el cálculo trata con sucesiones infinitas, la palabra sucesión en este texto significará sucesión infinita. Se iniciara el estudio de esta sección con la definición de función sucesión. Una función sucesión es una función cuyo dominio es el conjunto { 1, 2, 3, 4, ….., n, ….} de todos los números enteros positivos. Los números del contradominio de na función sucesión se denominan elementos. Una sucesión consiste de los elementos de una función sucesión listados en orden.
SUCESIONES ARITMETICAS:
En matemáticas, una progresión aritmética es una serie de números tales que la diferencia de dos términos sucesivos cualesquiera de la secuencia es una constante, cantidad llamada diferencia de la progresión o simplemente diferencia. Por ejemplo, la sucesión 3, 5, 7, 9, 11,... es una progresión aritmética de constante (o diferencia común) 2.
SUCESIONES GEOMÉTRICAS
Una progresión geométrica o sucesión geométrica está constituida por una secuencia de elementos en la que cada uno de ellos se obtiene multiplicando el anterior por una constante denominada razón o factor de la progresión. Se suele reservar el término progresión cuando la secuencia tiene una cantidad finita de términos mientras que se usa sucesión cuando hay una cantidad infinita de términos, si bien, esta distinción no es estricta.
Video instructivo: https://www.youtube.com/watch?v=ZlJJEIMKKKY
No hay comentarios:
Publicar un comentario